

Catalytic science and technology for environmental issues

K.I. Zamaraev 1

Boreskov Institute of Catalysis, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia

Abstract

In the first part of the lecture, it is demonstrated how knowledge that comes from studies of catalysis at the molecular level helps to design new, more efficient catalysts and catalytic processes. In the second part, the importance of catalytic technologies for solving environmental issues and providing sustainable development is discussed. In the third part, the role of the natural abiotic catalysis in the chemistry of the troposphere is discussed.

Keywords: Environmental issues; Troposphere

1. Introduction

Catalysis is the backbone of the chemical industry. It is also a fundamental feature of all life processes and of chemistry of the environment [1-3].

In the past three decades, we have witnessed a continuous shift from phenomenological approaches to structural and mechanistic investigations at the molecular level in the scientific study of catalysis [1]. Engineering of catalytic reactors has also become more based on a deeper understanding of reaction mechanisms, massand heat-transfer phenomena in catalyst pores, pellets and beds, and mathematical modelling of catalytic processes [1].

Catalysts, made by molecular design, already play an important role in the development of new environmentally friendly industrial technologies [1,2,4].

New catalytic technologies help to protect the

ozone layer, to combat the greenhouse effect, to create environmentally safer transport, to solve

environmental problems of energy production, to prevent pollution by H2S in gas and oil

mining and by CH₄ in coal mining, to purify

exhausts of chemical and various other indus-

tries, to provide the highest energy efficiency

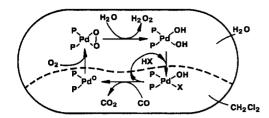
and minimize consumption of raw materials in

the chemical, petroleum and other industries, to

process renewable raw materials, such as

biomass, into valuable chemicals [2]. Reactions

over abiotic aerosol particles as catalysts play


an important role in the global and local chem-

istry of the atmosphere [3].

Let us consider a few typical examples (selected mainly from the works made at the Boreskov Institute of Catalysis, Novosibirsk) that illustrate how the principles of molecular

^{2.} Molecular design of catalysts and processes

Professor Zamaraev passed away on June 26, 1996.

Scheme 1. Pathway for conjugated oxidation of H₂O and CO.

design can be used to develop new industrial catalysts and catalytic processes.

2.1. Catalytic systems based on palladium

Palladium is one of the most important elements for the preparation of catalysts. Methods of molecular design are used nowadays to develop both homogeneous and heterogeneous palladium catalysts, as well as anchored and giant cluster palladium catalysts that cover the gap between classical homogeneous and heterogeneous catalysts.

2.1.1. Homogeneous catalysis with Pd complexes

Many important features of homogeneous catalysis with metal complexes in solutions are quite well understood at the molecular level [4]. Having at his disposal a list of known elementary reactions for complexes of various metals and estimates of thermodynamic and kinetic characteristics for these reactions, a researcher can design catalytic systems for selective transformations of various feedstocks into desired products [5].

By way of an example, in Scheme 1, the a priori expected pathway for synthesis of a valuable product H_2O_2 , via conjugated oxidation of H_2O and such pollutant as CO

$$H_2O + O_2 + CO \xrightarrow[20^{\circ}C.1 \text{ atm}]{} H_2O_2 + CO_2$$

is presented, from which the design of the really working catalytic system for this reaction has proceeded [5].

2.1.2. Heterogeneous catalysis with supported Pd metal

An impressive example of tailor-made commercial heterogeneous catalysts is a new family of Pd/C (palladium supported on carbon) catalysts proposed for hydrogenation processes at the Boreskov Institute of Catalysis [6]. For these new catalysts the size of supported palladium particles can be controlled rather precisely [2].

Particles of different size demonstrate differing activity and selectivity. As an example, in Table 1 the data are presented on hydrogenation of trifluoromethylnitrobenzene (TFMNB) to the corresponding amine (TFMAB). Based on these data, the catalyst with the particle size of 10–30 Å was chosen for commercial production.

The scanning tunneling electron microscopy (STM) data of Fig. 1 [7] explain why selectivity of Pd decreases with the increase of its particle size. As seen from Fig. 1c, the surface of a big Pd particle is rather rough, which implies different chemical properties of Pd atoms located at different spots of the surface.

Note that in these catalysts a new carbon support (so-called Sibunit) is used [2,6]. This support is non-pyrophorus, has a unique crushing strength (up to 500 kg/cm²) and attrition stability, high thermal stability as well as porous structure and adsorption properties optimal for catalysis. Pd/Sibunit catalysts are efficient in slurry, fixed bed and fluidized bed processes. They have such advantages as high activity and selectivity, mechanical and thermal stability. All these properties are very important for making

Table 1 Catalytic properties of palladium particles of various size anchored on the surface of Sibunit

Pd particle size (Å)	Activity/g TFMNB (g Pd min atm) ⁻¹	Selectivity (yield of TFMAB)
ca. 10	6.9	99.98
10-30	12.0	98.8
60-120	3.0	99.0
ca. 1000	1.3	80

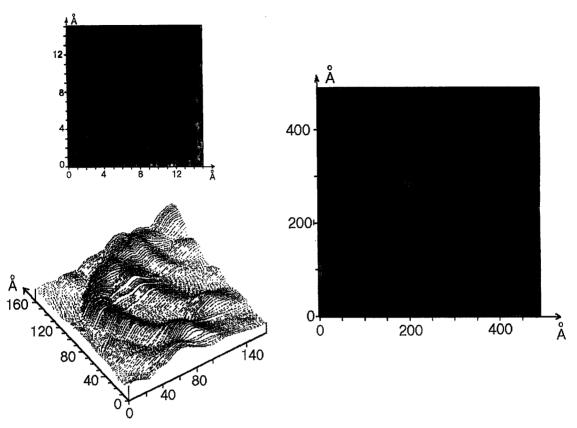


Fig. 1. STM images of: (a) the basal surface of graphite; (b) the surface of Pd/Sibunit catalyst with highly dispersed Pd particles; (c) the surface of a large Pd particle in Pd/Sibunit catalyst.

hydrogenation technologies more friendly to the environment. Sibunit and Pd/Sibunit catalysts for various hydrogenation processes are commercially produced in Russia by KALAN Ltd.

2.1.3. Catalysis with anchored Pd complexes

By anchoring metal complexes to the surface of a support one can prepare tailor-made heterogeneous catalysts with the intentionally designed composition and structure of the active sites [8].

As an example, in Fig. 2a the active site is presented of the bimetallic $(Pd + Co)/SiO_2$ catalyst for hydroformylation of olefins, designed by Likholobov and co-workers [5]. This site was assembled by anchoring carbonylphosphine palladium and cobalt complexes to the surface of

SiO₂. The mechanism of hydroformylation of ethylene over this bimetallic site is shown in Fig. 2b.

Pd is more active than Co in the steps of activation of H_2 and insertion of C_2H_4 into the metal-hydride bond, while Co is more active than Pd in the insertion of CO into the metal-alkyl bond. As a result, Pd and Co work together in the bimetallic site much more efficiently than each of them works alone in similar monometallic sites that contain only Pd or only Co.

2.1.4. Catalysis with giant Pd clusters

New recently designed catalytic materials are soluble giant palladium clusters containing more than 500 metal atoms [9]. Among reactions

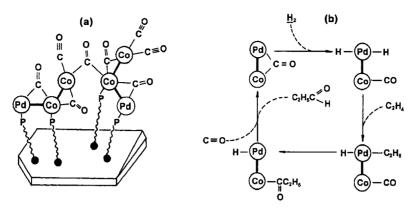


Fig. 2. Active site of the bimetallic (Pd + Co)/SiO₂ catalyst (a) and the mechanism of hydroformylation of ethylene over this site (b).

catalyzed by giant Pd clusters very selective oxidation of olefins should be mentioned (Reactions 1, yield 95–98%):

$$C_{2}H_{4} + 1/2O_{2} + AcOH$$

$$\rightarrow CH_{2} = CHOAc + H_{2}O$$

$$C_{3}H_{6} + 1/2O_{2} + AcOH$$

$$\rightarrow CH_{2} = CHCH_{2}OAc + H_{2}O$$

$$PhCH_{3} + 1/2O_{2} + AcOH$$

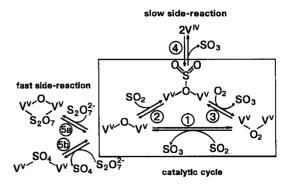
$$\rightarrow PhCH_{2}OAc + H_{2}O$$

$$2RCH_{2}OH + O_{2} \rightarrow RCOOCH_{2}R + 2H_{2}O$$
(2)

$$(CH3)2CHOH + 1/2O2$$

$$\rightarrow CH3COCH3 + H2O$$
 (3)

Note a 100% (within the accuracy of GC analysis) selectivity of reaction 3. This is the value of selectivity that is nowadays achievable and must be accepted as a standard for commercial catalytic processes, if we want to make the chemical industry of the 21st century environmentally friendly.


2.2. Redox catalysis by oxides

An excellent example of an industrial oxide catalyst that has been substantially improved using molecular design is the vanadium catalyst for the oxidation of SO₂ to SO₃ in the production of sulfuric acid, developed by Boreskov

and co-workers [10–12]. Its distinct feature is a combination of a detailed (at the level of elementary steps) investigation of reaction kinetics with the thorough examination of the catalyst states at various stages of its preparation and process performance, using a combination of spectroscopic techniques. The insight into the mechanism of this heterogeneous reaction is almost as deep as that traditionally available for only homogeneous catalysis.

The mechanism of SO_2 oxidation to SO_3 over industrial vanadium catalysts, as elucidated with various spectroscopic methods as well as relaxation and steady-state kinetic methods, is presented in Scheme 2.

Based on the knowledge of the kinetics and mechanism, substantial improvements were proposed at the Boreskov Institute of Catalysis for both the composition of the vanadium catalysts

Scheme 2. The mechanism of SO_2 oxidation to SO_3 over industrial vanadium catalysts.

and the operation of catalytic reactors for SO₂ oxidation (vide infra).

3. Catalytic technologies for environmental issues

3.1. Role of catalysis in protection of the ozone layer

It is known that some of synthetic products nowadays introduced to meet the requirements of modern civilization (for example, fully haloidated chlorofluorocarbons, CFCs), deplete the ozone layer [13]. New catalysts play an important role in the development of technologies for obtaining ozone friendly alternatives (such as hydrochlorofluorocarbons, HCFCs) [13].

Table 2 presents the list of HCFCs alternatives to the ozone depleting CFCs obtained with various catalysts. The data are taken from the review by Manzer [13].

3.2. The importance of catalysis in decreasing the greenhouse effect

The so-called greenhouse effect, which produces extremely unfavorable ecological consequences, may be decreased by development of:
(a) energy-saving technologies on the basis of environmentally more friendly catalytic combustion of fuels [14]; (b) new catalysts for high output fuel cells [14]; (c) catalysts and processes

Table 2
Ozone friendly HCFCs alternatives to ozone depleting CFCs

Market	Current CFC	HCFC-Alternative
Refrigerants	CF ₂ Cl ₂	CF ₃ CFH ₂ CHF ₂ Cl Blends/Azeotropes
Blowing agents	CFCl ₃	CH ₃ CFCl ₂ CF ₃ CHCl ₂ CHF ₂ Cl Blends/Azeotropes
Cleaning agents	CF ₂ ClCFCl ₂	New Compounds

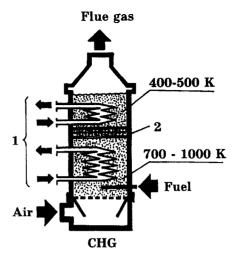


Fig. 3. A Catalytic Heat Generator (CHG) for heating/evaporation of liquids: (1) heated liquid; (2) temperature regulating grid.

for solar energy conversion and hydrogen energetics [14]; (d) catalysts and processes for synthesis from CO₂.

3.2.1. Technologies based on catalytic combustion

The main contributor to the greenhouse effect is known to be CO₂. Considerable reduction of the CO₂ emission into the atmosphere can be achieved by carrying out combustion processes in a more economic way in the so-called catalytic heat generators (CHGs) that were designed and commercialized by the Boreskov Institute of Catalysis [15]. CHGs (Fig. 3) are devices, where the highest energy efficiency is achieved by combining in one reactor various energy-consuming processes (e.g., heating or evaporation of water and other liquids, drying and thermal treatment of solid powders, detoxication of waste water from organics, etc.) with catalytic oxidation (i.e., combustion) of fuel with the stoichiometric amount of air at the desired temperature in a fluidized bed of special catalysts.

Catalytic combustion in CHGs is much more economic with respect to the consumption of fuel and energy efficiency and much more friendly to the environment than a conventional

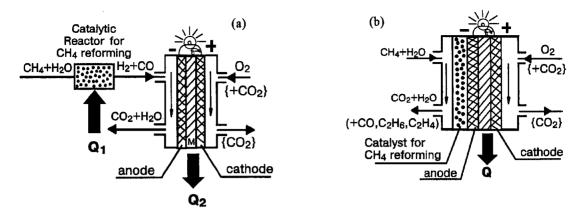


Fig. 4. High output methane fuel cells with the external (a) and internal (b) reforming of CH₄. Thick arrows indicate heat fluxes. M is the high-temperature oxygen conducting membrane or molten carbonate.

non-catalytic combustion in furnaces. In particular, the emission of CO₂ is reduced and the formation of nitrogen oxides is crucially suppressed with combustion in CHGs.

Various technologies based on CHGs have been commercialized in Russia and Kazakhstan.

3.2.2. Catalysts for high output fuel cells

Another route to reduce CO₂ emission into the atmosphere is to generate electricity via electrocatalytic oxidation of hydrocarbons in high output fuel cells (Fig. 4). Such fuel cells demonstrate notably higher efficiency of conversion to electricity of the chemical energy of hydrocarbon fuels than conventional thermal electric power plants [14].

Note that value added products such as ethylene can be formed from CH₄ in the fuel cell simultaneously with electricity, given appropriate choice of catalytic material for the anode.

3.2.3. Catalytic devices for solar energy conversion

Solar light is an alternative source of energy that is quite friendly to the environment. In particular, it emits neither CO₂ nor other greenhouse gases into the atmosphere. Moreover, solar energetics produces no acid rains.

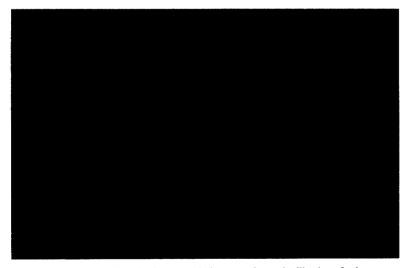


Fig. 5. A working pilot plant for thermocatalytic conversion and utilization of solar energy.

The most attractive method for solar energy utilization seems to be its direct conversion to the energy of chemical fuels, thereby allowing it to be accumulated so as to smooth the supply [14].

In Fig. 5, a photograph of a working pilot plant for thermocatalytic conversion and utilization of solar energy, based on a closed thermochemical cycle, is presented. At the first stage of the process solar energy is converted into the chemical energy of syngas (i.e., $CO + H_2$ mixture) via the endothermal reaction of methane reforming with steam

$$CH_4 + H_2O \rightarrow CO + 3H_2$$

This reaction is provided by heating of the catalyst bed for CH₄ reforming with the concentrated solar flux. The obtained syngas can be stored for a long time. When needed, the stored energy can be released via the reversed exothermal methanation reaction

$$CO + 3H_2 \rightarrow CH_4 + H_2O$$

which restores the initial chemical composition of the circulating reaction mixture.

The pilot plant of Fig. 5 has been built at the Boreskov Institute of Catalysis and installed in the Crimea (Ukraine). An efficiency $\eta_{\rm H} \cong 43\%$ at the useful power of 2 kWt has been achieved for the thermocatalytic solar-to-chemical energy conversion. In calculation of $\eta_{\rm H}$ the enthalpy of CH₄ reforming reaction was taken as the chemical energy. Recently an efficiency as high as $\eta_{\rm H} \cong 70\%$ has been achieved for this process under laboratory conditions at the Institute.

3.2.4. Catalytic processes for syntheses from CO_2

Catalysis can help to combat the greenhouse effect by using CO₂ emitted at power and steel plants as a feedstock for syntheses of various chemicals. At elevated temperature, CO₂ reacts with coal to produce CO

$$CO_2 + C \rightarrow 2CO$$

When mixed with H₂, the obtained CO becomes syngas, a famous feedstock for catalytic

organic syntheses. However, for large-scale organic syntheses based on CO₂ feedstock to become actually feasible, new processes must become available for production of H₂. These processes must be based on the decomposition of H₂O with alternative (other than oil, coal or natural gas) sources of energy, such as nuclear or solar sources.

3.3. Catalysis in creation of environmentally safer transport

Catalytic technologies help to substantially reduce pollution of the Earth atmosphere with transport vehicles by: (a) production of unleaded gasoline [16], (b) production of motor fuels with still lower sulfur content [17], (c) production of automobile catalytic converters [18], (d) development of a new generation of engines on the principles of catalytic fuel combustion [18].

3.4. Role of catalysis in solution of environmental problems of energy production

Catalytic technologies help to solve environmental problems of energy production by: (a) catalytic removal of NO_x from flue gases of power plants (see Fig. 6) [19]; (b) development of environmentally safer catalytic combustion processes [14]; (c) development of catalytic heat

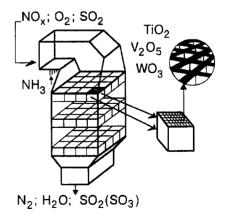


Fig. 6. Reactor and honeycomb catalyst for the catalytic reduction of NO_x in flue gases of power plants.

generators (CHGs) and technological processes on their basis [15].

3.5. Catalysis in purification of industrial exhausts

Catalysis helps to purify industrial exhausts by: (a) development of technologies for purification of industrial flue gases from CO, NO_x , SO_2 , H_2S , COS, hydrocarbons and other organics; among them are unique unsteady-state technologies [20] and one-step selective oxidation of H_2S into sulfur [21]; (b) development of technologies for catalytic recycling or incineration of solid and liquid wastes [22,23]; (c) development of technologies for catalytic incineration of pesticides and poisonous organic substances

containing Cl, F, P, S, N, etc.; (d) replacement of conventional liquid acids by solid superacids in organic syntheses [24–26].

3.5.1. Catalytic technologies for purification of industrial flue gases

As a first example, Fig. 7a exhibits the technological scheme of the unsteady-state catalytic process of SO₂ removal from flue gases of non-ferrous metallurgy plants via its oxidation and conversion to sulfuric acid. This technology has been designed and commercialized by Matros and co-workers at the Boreskov Institute of Catalysis [20]. Its advantages compared to conventional steady-state technology (Fig. 7b) are significant simplification of the reactor unit and cut in capital investments, decrease of energy

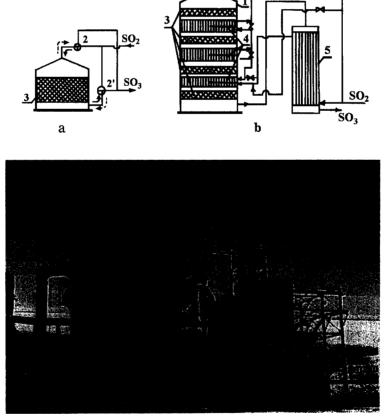


Fig. 7. Schemes and relative sizes of catalytic reactor and heat exchanger units for unsteady-state (a) and traditional steady-state (b) performance of SO₂ removal from flue gases of non-ferrous metal plants (1, reactor; 2 and 2', three way valves; 3, catalyst beds; 4 and 5, heat exchangers). Photograph of the industrial unit for unsteady-state SO₂ removal (c).

consumption and possibility to process diluted (with respect to SO_2) gases and gases with a variable concentration of SO_2 .

Similar, very efficient unsteady-state technologies have been commercialized by the same Institute for detoxication of flue gases from CO and various organics, as well as from NO_x [20].

As a second example, in Fig. 8, the scheme is presented of the one-step removal of H₂S from flue gases via selective oxidation to sulfur in a fluidized catalyst bed. This technology has been proposed recently at the Boreskov Institute of Catalysis by Ismagilov and co-workers [21]. This technology is much simpler than the conventional multi-step Claus process. It can be used to remove H₂S from flue gases of refineries, streams of natural gas, hot waters of geothermal power stations, etc.

3.5.2. Technologies for catalytic recycling or incineration of solid and liquid wastes

Ono et al. have described a catalytic technology for recycling plastics via their liquification into motor fuels [22].

Another example in this area are catalytic technologies for environmentally safer catalytic incineration of solid and liquid wastes in catalytic heat generators [15].

A special note should be made about technologies for incineration of pesticides and toxic organic substances, containing Cl, F, P, S, N,

Fig. 8. Reactor with fluidized catalyst bed for selective oxidation of hydrogen sulfide.

etc. Non-catalytic combustion of these compounds in a furnace is often accompanied by emission of such harmful pollutants as dioxines, as well as SO_2 , NO_x , etc. Therefore, work is under way on catalytic technologies that convert burnt compounds selectively into harmless products. For example, combustion catalysts have been designed that convert organic nitrogen mainly to N_2 rather than NO_x [14].

3.6. Role of catalysis in preventing pollution of the atmosphere by H_2S at gas and oil mining and by CH_4 at coal mining

Catalysis helps to prevent pollution of the atmosphere by H_2S in gas and oil mining and by CH_4 in coal mining by: processing H_2S into sulfur in a traditional multi-step Claus process [27]; processing H_2S into sulfur in a new onestep process of selective oxidation (Fig. 8) [21]; as well as oxidation of CH_4 in diluted mixtures with air using unsteady-state technology [20].

In the latter process substantial amounts of energy can be produced simultaneously with the elimination of CH₄.

3.7. Catalysis in providing highest energy efficiency and minimizing consumption of raw materials in chemical, petroleum and other industries

In the coming years, energy efficiency is expected to be substantially improved and consumption of raw materials minimized with the use of new catalytic technologies. The chemical and petroleum industries are expected to be revolutionized by a coming new generation of tailor-made catalysts, that will accomplish multi-step reactions in one step and provide selectivity with respect to the desired product close to 100%, thus minimizing the consumption of raw materials.

The highest energy efficiency can be achieved using Catalytic Heat Generators, where various energy-consuming processes (heating, evaporation, drying, etc.) can be combined in the same reactor with environmentally friendly catalytic combustion at a desired temperature.

Even well established branches of the chemical industry, e.g., production of sulfuric acid, synthesis of ammonia and methanol, steam reforming of methane, sulfur recovery from H_2S and SO_2 as well as detoxication of exhaust gases from various industries, can be revolutionized with respect to energy efficiency by new catalytic technologies, such as unsteady-state reverse processes or one-step selective oxidation of hydrogen sulfide to sulfur.

3.8. Role of catalysis in processing biomass into valuable chemicals

In future, biomass may become an important feedstock for chemical industry. Using catalytic technologies, it is possible to convert biogas into syngas, that can be further converted into various valuable chemicals over appropriate catalysts. In this way, liquid hydrocarbon fuels and various chemicals can be produced from biomass [28].

Pyrolysis of biomass into the so called biocrude-oil with the subsequent catalytic upgrading of the latter is yet another way to produce liquid fuel [29].

Catalytic technologies can be used also to convert components of biomass selectively into various valuable products [30].

4. The role of natural abiotic catalysis in the global chemistry of atmosphere

Recently, an expected important role of catalysis in the global (and local) chemistry of the Earth atmosphere has been reported [3]. In particular, a possible role of heterogeneous photocatalysis over dust aerosol particles was estimated to be non-negligible [3]. Photocatalytic processes may occur in the troposphere on aerosol particles containing Fe₂O₃, TiO₂ and ZnO (Fig. 9) under the action of the near ultraviolet, visible and near infrared solar light.

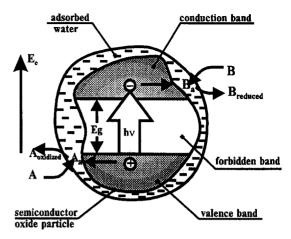


Fig. 9. Photogeneration of the holes and electrons at the aerosol semiconductor particle under light with $h\nu > E_{\rm g}$ and subsequent redox processes that provide the overall reaction: $A+B \rightarrow A_{\rm oxidized} + B_{\rm reduced}$.

Photocatalysis is anticipated to affect the intensity of acid rains, concentration of some 'greenhouse gases' and clean the atmosphere from harmful compounds. Thus, desert areas where continental dust is generated, perhaps, may serve as 'kidneys' for the Earth.

5. Conclusion

The examples presented above suggest that the innovations which will come from catalysis are indeed likely to make the industry of the future much more friendly to the environment, much more efficient with respect to the consumption of energy and raw materials, susceptible to the use of alternative feedstocks of raw materials and energy. Thus catalysis will help to provide a sustainable development of mankind and improve the quality of life worldwide.

References

J.M. Thomas and K.I. Zamaraev eds., Perspectives in Catalysis: A Chemistry for the 21st Century, monograph (Blackwell/International Union of Pure and Applied Chemistry, Oxford, 1992).

- [2] K.I. Zamaraev, Chem. Sustainable Develop. 1 (1993) 133.
- [3] K.I. Zamaraev et al., Catal. Rev.-Sci. Eng. 36 (1994) 617.
- [4] G.W. Parshall and S.D. Ittel, Homogeneous Catalysis (Wiley, New York, 1992).
- [5] V.A. Likholobov, In: eds. J.M. Thomas and K.I. Zamaraev, Perspectives in Catalysis: A Chemistry for the 21st Century, monograph (Blackwell/International Union of Pure and Applied Chemistry, Oxford, 1992) p. 67.
- [6] V.A. Likholobov et al., React. Kinet. Catal. Lett. 54 (1995) 381
- [7] Sh.K. Shaikhutdinov and D.I. Kochubey, Catal. Lett. 28 (1994) 343.
- [8] Yu.I. Yermakov, V.A. Zakharov and B.N. Kuznetsov, Catalysis by Supported Metal Complexes (Elsevier, Amsterdam, 1981)
- [9] M.N. Vargaftik et al., J. Mol. Catal. 53 (1989) 315.
- [10] G.K. Boreskov, Heterogeneous Catalysis (Nauka, Moscow, 1986).
- [11] G.K. Boreskov, Catalysis. Problems of Theory and Practice (Nauka, Novosibirsk, 1987).
- [12] B.S. Balzhinimayev et al., Faraday Disc. Chem. Soc. 87 (1989) 133.
- [13] L.E. Manzer, Catal. Today 13 (1992) 13.
- [14] K.I. Zamaraev et al., Catalysis for Energy Production, in: ed. D. Behrens, Strategies 2000, Proc. 4th World Congr. on Chem. Eng., Karlsruhe, 1991, p. 49.
- [15] G.K. Boreskov et al., Zh. Khim. Ob-va im. D. I. Mendeleeva 29 (1984) 379; G.K. Boreskov et al., Soviet Patent No. 826798 (1981).
- [16] I.E. Maxwell, Catal. Today 1 (1987) 385.
- [17] B.G. Gates et al., Chemistry of Catalytic Processes (Mc-Craw-Hill, New York, 1979).

- [18] G.T. Acres, In: eds. J.M. Thomas and K.I. Zamaraev, Perspectives in Catalysis: A Chemistry for the 21st Century, monograph (Blackwell/International Union of Pure and Applied Chemistry, Oxford, 1992) p. 359.
- [19] H. Bosch and F. Janssen, Catal. Today 2 (1988) 369.
- [20] Yu.Sh. Matros, Catalytic Processes under Unsteady-State Conditions (Elsevier, Amsterdam, 1989).
- [21] Z.R. Ismagilov et al., French Patent, N. De Depot 8901 633, US Patent No. 4886649, German Patent No. 3903 294, Canada Patent No. 590617, Japan Patent No. 030923/89.
- [22] T. Ono et al., In: eds. S. Yoshida, N. Takezawa and T. Ono, Catalytic Science and Technology, Vol. 1 (Kodansha, Tokyo/VCH, Wienheim, 1990) p. 355.
- [23] Z.R. Ismagilov and M.A. Kerzhentsev, Zh. Khim. Ob-va im. D. I Mendeleeva 35 (1990) 43.
- [24] W. Holderich, Proc. 10th Intern. Congress Catal., Budapest (Elsevier, Amsterdam, 1993) Part A (1992) p. 127.
- [25] C.S. John et al., In: eds. J.M. Thomas and K.I. Zamaraev, Perspectives in Catalysis: A Chemistry for the 21st Century, monograph (Blackwell/International Union of Pure and Applied Chemistry, Oxford, 1992) p. 387.
- [26] Zeolite Catalysis for the Solution of Environmental Problems, Intern. Meeting, Yaroslavl (1992), Abstracts, Boreskov Institute of Catalysis, Novosibirsk, 1991.
- [27] S.K. Gangwal et al., Environ. Progr. 10 (1991) 186.
- [28] V.N. Parmon, Chem. Sustainable Develop. 1 (1993) 51.
- [29] V.A. Likholobov et al., EUROPACAT-II Congress, Abstracts, S12 O12, Maastricht, 1995, p. 781.
- [30] B.N. Kuznetsov, Catalysis in Chemical Conversion of Coal and Biomass (Nauka, Novosibirsk, 1990).